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Statistical Pearls Ill. The Most Likely 1nterpret:ation 
PATRICK D. HARRIS, PhD* 

ROBABILITY is probably the most impor- 
tant word in modern biomedical re- 

search. Yet, it would be difficult for most 
of us to answer the question, “What is prob- 
ability?’ In a sense, probability is like a 
pregnant woman in that it is a currently 
existing condition which defines an expected 
future event. Probability is a prediction of 
the future, but our measure of probability 
comes from past observations. The more in- 
formation we have about past events, the 
better is our prediction of a future possi- 
bility. 

Recently, a colleague, D. L. Wiegman, 
brought me some interesting data which in- 
volved one interpretation of probability. 
Essentially, he had used a well-defined pro- 
tocol to hemorrhage rats for 1 hour. He had 
records of body weight (grams) a t  the time 
of hemorrhage and death (d) or survival 
(s) for the 24-hour period which followed 

reinfusion of the hemorrhaged volume. 
These data were: 166/s, 196/d, 146/d, 
191/s, 204/s, 153/d, 208/d, 206/s, 220/d, 
119/d, 185/s, 175/s, 151/d, 140/s, 140/d, 
139/d, 1791s, 158/d, 161/s, 1431s, 155/d, 
144/d, 145/s, 18O/s, 196/s, 172/s, 172/s, 
112/d, 159/s, 120/d, 115/d, 116/s, 127/d, 
155/d, 117/s, 110/d, 114/s, 1501s. The aver- 
age weight was 156 gm, with a range from 
110 to 220 gm and survival was 52.6 percent 
(20sX100/38). At this point, one might 
predict that any future rat would have a 
52.6 percent probability of being alive 24 
hours after hemorrhage with the protocol. 
Is this a good prediction regardless of the 
weight of this future rat? 

An investigator might attempt to answer 
this question by construction of a histo- 
gram1 for the existing data. One such at- 
tempt would give a histogram with “per- 
cent survival in each weight class” on the 
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ordinate and with “body weight in grams” 
on the abscissa. The abscissa would be di- 
vided into 8 class intervals with a starting 
point of 100 gm and with an interval size 
of 15 gm. This histogram would be difficult 
to interpret, however, because 6 of the inter- 
vals would contain 5 or less observations 
(animals). 

For the individual weight/survival data 
above, we posed the question, “IS the prob- 
ability for survival independent of body 
weight (ie, the same for weights between 
110 and 220 gm)?” We will approach the 
answer to this question by use of a cumula- 
tive distribution curve (fig 1). For our data, 
the abscissa is expressed as “body weight 
in grams” with “steps” which are as small 
as possible. Ideally, we should have one 
observation for each abscissa step from the 
smallest weight to the largest weight, so we 
have selected a 3-gm step size (approxi- 
mately [200-110]/38). The first step is se- 
lected by the formula: the “largest weight” 
(220 gm) minus the product of the “step 
size” ( 3 )  and the “number of observations 
less one” (38 - 1). Thus, our starting point 
is 220- (3  x 37) or 109 gm. For each 
“step” on the abscissa, an ordinate value is 
calculated as the cumulative survival for 
all observations with bodv weight less than 
or equal to (5)  the “step wecght.” This property of convergence is better 

For example, the 1st step is 109 gm. 
Since our data do not contain any animals 
with weight I 109 gm, we move to the next 
step (109 + 3 = 112 gm) . Our data contain 
2 animals (112ld and 110/d) with weights 
5112 gm. Since neither of these animals 
survived, the cumulative survival (ordinate 
value) is 0 percent. The next step (112 + 3 
= 115) contains 4 animals (112/d, 115/d, 
110/d, 114/s) with weights 5115 gm. The 
cumulative survival is 25 percent. The cu- 
mulative survival is calculated for each of 
the remaining steps in a similar fashion and 
is plotted on the ordinate in figure 1. The 
last step (217 + 3 = 220) includes all ani- 
mals, and thus has the ordinate value which 
is the survival (52.6 percent) for all obser- 
vations. 

How does one interpret this cumulative 
distribution curve to investigate the possi- 
bility of a relationship between survival and 
body weight? Perhaps an insight for this 
interpretation can be gained from examina- 
tion of theoretic data. I have generated a 
sequence of 38 theoretic observations of sur- 
vival and death by using a table of random 
numbers to assign 1 observation to each 
3-gm step over the range 109 to 220 gm. 

demonstrated in another manner. A cumu- 
lative distribution curve is arbitrarily con- 
structed for the lower one-half (19) of the 
total number of theoretic observations. This 
curve appears in the left half of figure 3 for 
steps from 109 to 163 gm. Another cumula- 
tive distribution curve is constructed for 
the upper one-half (19) of the total number 
of observations by starting with the highest 
weight and stepping downward (right half 
of fig 3).  In this curve, the ordinate value 
for each step is the cumulative survival for 
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FIG 2. Cumulative distribution curve for survival 
of 38 “theoretic” animals for which the probability 
of survival is 50 percent and is independent of body 
weight. The sequence of survival and death observa- 
tions was obtained from a random number table.’ 
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FIG 3. Cumulative distribution curves for survival 
of 19 “theoretic” animals with weights 5163  gm 
(left panel) and 19 “theoretic” animals with weights 
- >163 gm (right panel). The sequence of theoretic 
survival and death observations is the same as used 
for the cumulative distribution curve in fig 2. 

all observations (theoretic animals) with 
weight greater than or equal to ( 2 )  the 
abscissa value. (For example, the first step 
is 220 - 3 = 217 and the ordinate is percent 
survival for all “animals” with weight 2217  
gm.) Figure 3 demonstrates convergence 
because the survival (47.3%) in the last 
step (160-163 gm) for the lower cumulative 
curve (left panel) approaches the survival 
(52.6% in the last step (166-163 gm) for 
the upper cumulative curve (right panel). 
These survivals (47.3% and 52.6%) also 
approach (ie, converge toward) the “real 
value” of 50 percent. 

Comparison of our animal data (fig 1) to 
our theoretic data (fig 2) suggests the ab- 
sence of convergence in the animal data 
(fig 1 ) .  The cumulative distribution in fig- 
ure 1 appears to converge toward 35 per- 
cent until step 163 is reached. Following 
this step, the cumulative curve appears to 
converge toward the survival of 52.6 percent 
for the “last step” (217-220) . This suspi- 
cion of divergence (lack of convergence) is 
better investigated by arbitrarily dividing 
the data at the point which precedes the 
suspected change (step 160) . 

Figure 4 shows the cumulative distribu- 
tion curve for 23 animals with weight 1160 
gm (left panel) and that for 15 animals 
with weight 2160 gm (right panel). In 
contrast to “convergence” for our theoretic 
data in figure 3, our animal data in figure 4 
appear to diverge (35% survival for the 
157-160 step in the left curve and 80% 
survival for the 163-160 step in the right 
curve). This suggests that body weight in 
the 110 to 220 gm range influences survival 
of hemorrhage. In other words, we would 
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FIG 4. Cumulative distribution curves for survival 

of 23 rats with weights 5160  gm (left panel) and 
for 15 rats with weights 2160 gm (right panel) dur- 
ing the %-hour period following hemorrhage. These 
were obtained from the same raw data as used for 
the cumulative distribution curve in fig 1. 

not predict that a future rat would have a 
52.6 percent probability of being alive 24 
hours after hemorrhage, with my colleague’s 
protocol . 

As a conclusion to this discussion on 
probability and cumulative distribution 
curves, several points need emphasis: 

(a) The end (last) step in a cumulative 
distribution gives a “best estimate” of prob- 
ability; yet, it does not necessarily give the 
exact probability (or chance) that an event 
will happen. 

(b) The “lower” and “upper” cumulative 
distributions can indicate convergence if the 
end step probabilities are as close to each 
other as in figure 3, or divergence if they are 
as far from each other as in figure 4. (How 
close is “close?’ This is most appropriately 
answered by statistical tests, which have 
not been discussed here.) 

(c) Cumulative distribution curves usu- 
ally work very well for 18 or more observa- 
tions, whereas histograms usually require 
40 or more observations to give useful inter- 
pretations. 

(d) Cumulative distribution curves do 
not proue or statistically test anything; yet, 
they can lead to a hypothesis which could 
otherwise be overlooked and which can sub- 
sequently be tested statistically. 
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