
N this refresher course, I will review some basic
questions one should ask regarding a study’s
use of statistics (Table I). Other aspects of
research methodology relevant to a study’s

validity and generalizability will not be discussed. The
reader is referred to other texts for further details on
those aspects of research design and interpretation.1–3

IIss  tthhee  ssttuuddyy  bbiigg  eennoouugghh??
The credibility of a study’s results depends on the
extent of bias and random error that exists in the
study. Bias leads to systematic deviations from the
truth; methodological factors that affect internal valid-
ity influence the magnitude of bias. Random error
relates to chance; sample size influences the magni-
tude of random error.

The sample size is influenced by four factors. An
adequate sample size is one that can measure the
anticipated frequency (for a study with a single
cohort) or detect a realistic and clinically important
difference (for a study comparing two or more
cohorts) for the primary outcome of interest with
minimal probabilities of positive or negative results
being due to chance (i.e., false positive and false neg-
ative results). To determine the adequacy of the sam-
ple size, the reader must be able to identify the study’s
research question and the probabilities of false positive
and false negative results on which the sample size cal-
culation was made.

If a study has been written clearly, the reader should
be able to identify the following elements of a research
question: the population of interest, the interven-
tion(s) or risk factor(s) depending on the nature of the
study, the control(s) if the study compares two or
more cohorts, and the outcome(s) of interest. The
interventions and controls enable the reader to deter-
mine the appropriateness of the anticipated frequency
or the difference to be detected. The outcomes enable
the reader to determine whether the sample size is

based on the primary outcome (ideally), on a surro-
gate for the primary outcome (if the primary outcome
is difficult to measure or exceedingly rare), or on other
outcomes (less appropriately).

The probabilities of false positive and false negative
results are usually set by convention. The probability
of a false positive result is the alpha level, which is usu-
ally set at 5%. This value is based on the fact that two
standard deviations encompass 95% of the measure-
ments of any variable with a normal ("bell curve") dis-
tribution. On rare occasions, alpha may be set at 1%.
(Three standard deviations encompass 99% of the
measurements in a normal distribution). The proba-
bility of a false negative result is the beta level.
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I TABLE I Basic questions to ask regarding a study’s data analysis

1. Was the study’s sample size sufficient?
a. What was the research question?
b. Was the sample size based on the primary outcome of 

interest?

2. Were the statistics appropriate?
a. Was the measured variable expected to have a normal 

distribution?
b. What were the measures of centrality and spread?
c. What inferential tests were used?

3. How were common issues handled when they occurred?
a. Was there adjustment of the P-value when multiple 

comparisons were made?
b. Were dropouts, withdrawals, and outliers handled 

appropriately?
c. When no difference was found between groups, was there a 

power analysis, description of the smallest detectable 
difference based on the study’s sample size, or calculation 
of the required sample based on the observed frequencies?

d. When no event was observed, was there a description of the 
maximum possible frequency based on the study’s sample 
size?



Typically, one refers to the power (1 - beta), which is
usually set at 80% or 90%, instead of beta.

Most readers will be content to believe the sample
size if the above factors have been addressed ade-
quately. For those individuals who wish to verify the
calculations, sample size formulae can be found in
general biostatistical textbooks.4 For studies involving
two or more cohorts, PS version 2.1.31 (Vanderbilt
University Medical Center, Nashville, USA),5 a free-
ware sample size and power calculator, may be down-
loaded from www.mc.vanderbilt.edu/prevmed/ps/.

AArree  tthhee  ssttaattiissttiiccss  aapppprroopprriiaattee??
Non-statisticians often complain that no two statisti-
cians will use the same statistical test when posed with
a statistical question. Although this view is highly
exaggerated, there is often more than one appropriate
statistical test or method for data analysis. The key
points to consider when choosing a statistical test
include the purpose of the analysis (e.g., to make com-
parisons, to assess relationships, or to test for interac-
tions), the type of data (e.g., categorical or
continuous), the study design, and the number of
cohorts.6 The details of choosing a statistical test are
beyond the scope of this refresher course. Some com-

mon statistical tests are described in Table II; readers
are referred to other texts for additional details.3,6,7

Although a reader may not have the expertise to
determine the appropriateness of a specific analysis
plan, most of the statistical errors in anesthesia studies
can be recognized (and avoided) without extensive
statistical knowledge.8–10

In general, the most common statistical errors
relate to a failure to recognize the data’s distribution,
which affects the choices of descriptive statistics (to
describe the data’s centrality and spread) and inferen-
tial statistics (to compare two or more sets of data).
Data can have a binomial distribution, a normal ("bell
curve") distribution, a skewed (asymmetric) distribu-
tion, or other less common distributions (such as a
bimodal one). I will focus on normal and skewed dis-
tributions, which tend to be more common.

The normal distribution is commonly seen for many
biological phenomena (e.g., systolic blood pressure in a
random sample). The common statistics of centrality,
mean (arithmetic average), median (middle observa-
tion), and mode (most frequent observation), will be
identical and located at the peak of the bell curve. In
contrast, the values of those three statistics will differ in
skewed distributions. Skewed distributions can be left-
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TABLE II Common statistical tests

Purpose Parametric test Nonparametric test Example

Comparison of two independent sets Chi-square test, Fisher’s exact test Comparison of laryngoscopic
of non-continuous data logistic regression grade obtained from two intubation

techniques

Comparison of > two independent sets Chi-square test, Kruskal-Wallis test As above, but with three intubation
of non-continuous data logistic regression techniques

Comparison of two independent sets Unpaired t test Mann-Whitney U test Comparison of extubation times
of continuous data between two anesthetic regimens

Comparison of > two independent sets ANOVA Kruskal-Wallis test As above, but with three anesthetic
of continous data regimens

Comparison of two paired sets Paired t test Wilcoxon matched Comparison of pain intensity before
of continous data paired test and after an analgesic

Comparison of > two repeated measurements Repeated measures Comparison of pain intensity at
ANOVA hourly intervals

Determine association between sets of Chi-square, Determine relationship between
non-continuous data logistic regression gender and postoperative nausea

Determine association Pearson’s rank Spearman’s rank Determine relationship
between sets ofcontinuous data correlation correlation between preoperative hemoglobin

and amount of transfusion



skewed (also called negatively skewed), with the tail to
the left of the peak (e.g., age distribution of individuals
with perioperative myocardial infarction since children
suffer infrequently from this problem), or right-skewed
(also called positively skewed), with the tail to the right
of the peak (e.g., postoperative hospital length of stay
for a low-risk surgical procedure). In skewed distribu-
tions, the mode will describe the value at the peak of the
curve, the mean will be the statistic of centrality that has
a value closest to the tail, and the median will lie
between the mode and the mean. To remember this
easily, note that mean, median, and mode are in alpha-
betical order going from the tail to the peak. For a
skewed distribution, the median is the most appropriate
statistic of centrality.

Statistics that describe the spread of the data
include range (difference between largest and smallest
observation), interquartile range (central 50% of a dis-
tribution), standard deviation (SD, a summary mea-
sure of the differences of each observation from the
mean of all observations), and variance (square of the
SD). The standard deviation and the interquartile
range are usually the most appropriate statistics to
describe the spread in normal and skewed distribu-
tions respectively.

Inferential tests can be divided into parametric and
non-parametric tests. Parametric tests make a number
of assumptions about the data, including an assump-
tion the data is distributed in a particular distribution
- usually the normal distribution. Non-parametric
tests do not make such assumptions.3 Traditionally,
parametric tests were believed to be more powerful in
their ability to detect a statistical difference compared
to non-parametric tests; however, the difference in
power between the two types of tests may not be sig-
nificant.11,12 When the data appear to be distributed in
a non-normal fashion, the reader should determine
whether the investigators used non-parametric tests,
which are appropriate, or parametric tests. A common
error is the use of parametric statistics with data that
violate the assumptions of those tests. The risk of a
false positive result will increase, especially if the dis-
tribution of data deviates greatly from a normal distri-
bution. If parametric tests are to be employed
appropriately, non-normally distributed data should
be mathematically transformed (by using the recipro-
cal, square root, or logarithm of the variable) to yield
a normal distribution.

HHooww  wweerree  ccoommmmoonn  iissssuueess  aaddddrreesssseedd  wwhheenn  tthheeyy
ooccccuurrrreedd??
A reader should expect to see a description of the
methods used to address some common issues that

occur in a study. Issues relating to multiple compar-
isons and dropouts / outliers should be addressed
before the study and are described in the study’s
methods section; issues relating to negative results and
zero events are usually addressed after the study is
completed and may be described either in the study’s
methods or discussion sections.

IIssssuueess  tthhaatt  sshhoouulldd  hhaavvee  bbeeeenn  aaddddrreesssseedd  bbeeffoorree  tthhee
ssttuuddyy  ssttaarrtteedd
When a P-value of < 0.05 demonstrates a statistically
significant difference, the chance of a false positive
result is one in 20 for a single comparison. If multiple
comparisons are made amongst variables that may be
related to each other (e.g., comparisons of multiple
demographic factors between two groups, comparisons
of an outcome over multiple time points between two
groups, or pairwise comparisons of more than two
groups), each comparison has a one in 20 chance of
resulting in a false positive result. Without adjustment
of the P-value, one should not be surprised to see a
"positive" result if 20 comparisons were made. In situ-
ations of multiple comparisons, adjustment of the P-
value is needed to ensure that the chance of a false
positive result is one in 20 for all comparisons. There
are a number of methods to adjust for multiple com-
parisons. One common and conservative method is the
Bonferroni correction, in which the P-value needed to
demonstrate a statistically significant difference in one
comparison is < 0.05/n, where n is the number of com-
parisons to be made.

During a study, subjects may drop out or withdraw
before completing the study. Whether the total num-
ber of subjects should include or exclude
dropouts/withdrawals will depend on the nature of
the research question, the intervention, and the out-
come of the study. For example, if the question is
"What is the postoperative pain intensity of patients
receiving analgesia from a properly sited epidural
catheter?" one may be justified in excluding subjects
with dislodged epidurals or patchy sensory blockade.
However, if the question is "What is the postoperative
pain intensity of patients receiving epidural analgesia?"
one should include all subjects with epidural catheters.
In situations when the decision to include or exclude
dropouts/withdrawals is debatable, including all sub-
jects in the analysis (i.e. intention-to-treat analysis) is
more conservative. One may perform post-hoc sensi-
tivity analyses to determine whether exclusion of
dropouts affects the conclusion or not.

Similarly, outliers or extreme values can occur due
to extremes of the norm (e.g., height in a basketball
player), idiosyncracies in a subject (e.g., genetic varia-
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tions of a metabolic pathway), or to errors in the col-
lection or manipulation of the data (e.g., transcription
errors). The first two should be included in the data
analysis; the third should not.

IIssssuueess  tthhaatt  sshhoouulldd  hhaavvee  bbeeeenn  aaddddrreesssseedd  aatt  tthhee  eenndd  ooff
tthhee  ssttuuddyy
A study with a presumably adequate sample size may
still find no difference (a "negative result") between
groups. Failure to detect a difference is not the same
as the absence of a difference (equivalence). If the
sample size was calculated based on a formula for
equivalence, then one may conclude that the com-
pared groups were statistically equivalent with respect
to the outcome on which the sample size was based. If
the anticipated difference in the frequency of the out-
come between the compared groups was so small that
any lesser difference would not be clinically signifi-
cant, one may conclude that the groups are sufficient-
ly similar, clinically, with respect to the outcome on
which the sample size was based. If the negative result
is not due to either of the two situations above, the
authors should calculate the power of the study to
detect the anticipated difference based on the
observed frequency of the outcome in the control
group (power analysis), describe the smallest
detectable difference based on the study’s sample size
and the observed frequency of the outcome in the
control group, or calculate the number of additional
subjects required to conclude that the observed dif-
ference is statistically significant. For readers who wish
to determine whether a negative study has an ade-
quate sample size to detect a clinically important dif-
ference, sample size nomograms13 and freeware power
calculators5 are available.

Another issue is the null result or zero event. This
is especially common with measurements of rare
events. As with negative results, absence of an event is
not the same as a zero probability of its occurrence.
The authors should provide an estimate of the maxi-
mum frequency of the outcome (i.e., the upper 95%
confidence limit of 0/n). For readers who wish to cal-
culate the frequency, the formula is:

maximum frequency = 1 - 0.051/n

where n is the number of subjects.14,15 For sample
sizes with more than 30 subjects, the equation can be
simplified to:

maximum frequency = 3/n
where n is the number of subjects.14,15

SSuummmmaarryy
Along with issues related to study design, errors in the
data analysis plan can threaten the validity of results.

Readers (and authors) should check for common sta-
tistical errors that may bias results or invalidate con-
clusions.

AAcckknnoowwlleeddggeemmeennttss
I thank Boris Sobolev, PhD, and Henry Sung,
BSc(Math) MD, for their comments of earlier drafts of
this manuscript and all of my former and current resi-
dents, graduate students, and fellows, whose questions
on research design and statistics have improved my
own understanding of this field.

RReeffeerreenncceess
1 Guyatt G, Rennie D. Users’ Guides to the Medical

Literature. Chicago: AMA Press; 2002.
2 Fletcher RH, Fletcher SW, Wagner EH. Clinical

Epidemiology: The Essentials, 3rd ed. Baltimore:
Williams & Wilkins; 1996.

3 Greenhalgh T. How to Read a Paper: the Basics of
Evidence Based Medicine, 2nd ed. London: BMJ;
2000.

4 Appendix A. Calculating the required sample size: for-
mulae. In: Pereira-Maxwell F (Ed.). A-Z of Medical
Statistics. A Companion for Critical Appraisal. London:
Oxford University Press; 1998: 87–8.

5 Dupont WD, Plummer WD. PS: Power and sample
size. 16 Oct 2003 [cited 5 Jan 2005]. Available from
URL; http://www.mc.vanderbilt.edu/prevmed/ps/.

6 Appendix B. Choosing the appropriate statistical test.
In: Pereira-Maxwell F (Ed.). A-Z of Medical Statistics.
A Companion for Critical Appraisal. London: Oxford
University Press; 1998: 89–91.

7 Swinscow TD, Campbell MJ. Statistics at Square One,
10th ed. London: BMJ Books; 2002.

8 Avram MJ, Shanks CA, Dykes MH, Ronai AK, Stiers
WM. Statistical methods in anesthesia articles: An eval-
uation of two American journals during two six-month
periods. Anesth Analg 1985; 64: 607–11.

9 Goodman NW, Hughes AO. Statistical awareness of
research workers in British anaesthesia. Br J Anaesth
1992; 68: 321–4.

10 Goodman NW, Powell CG. Could do better: statistics in
anaesthesia research. Br J Anaesth 1998; 80: 712–4.

11 Dexter F. Analysis of statistical tests to compare doses
of analgesics among groups. Anesthesiology 1994;
81:610–5.

12 Delucchi KL, Bostrom AG. Small sample longitudinal
clinical trials with missing data: a comparison of analyt-
ic methods. Psychol Methods 1999; 4: 158–72.

13 Young MJ, Bresnitz EA, Strom BL. Sample size nomo-
grams for interpreting negative clinical studies. Ann
Intern Med 1983; 99: 248–51.

14 Hanley JA, Lippman-Hand A. If nothing goes wrong,

R4 CANADIAN JOURNAL OF ANESTHESIA



is everything all right? Interpreting zero denominators.
JAMA 1983; 249: 1743–5.

15 Ho AM, Dion PW, Karmakar MJ, Lee A. Estimating
with confidence the risk of rare adverse events, includ-
ing those with observed rates of zero. Reg Anesth Pain
Med 2002; 27: 207–10.

R5


