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Probability theory

The probability of an event may be determined

empirically (by observation) or mathematically

(using probability theory). Probability theory is

fundamentally important to inferential statisti-

cal analysis. Predicting population parameters

from sample data is based on the assumption

that the sample data are ‘typical’ of the popu-

lation data. The laws of probability govern just

how typical the data are. For example, we may

toss a coin 20 times to determine the likelihood

of obtaining heads on a single throw. Common

sense tell us that, provided the coin is unbiased

with heads just as likely to fall as tails, the ratio

of heads:tails should be 1:1 and therefore the

‘expected’ outcome after 20 tosses would be 10

heads. However, the actual outcome may well

be different. If we were to repeat the experiment

by tossing the coin 1000 times, it is likely that

the ratio heads:tails would be very close to 1:1

and if the coin was tossed an infinite number of

times, the ratio would be exactly 1:1.

We may consider the population of interest in

this scenario to be the outcome of an infinite

number of coin tosses. A sample drawn from this

population is an experiment in which the coin is

tossed a finite number of times. Returning to the

experiment in which the coin is tossed 20 times,

probability theory may be used to determine

mathematically the likelihood of obtaining any

combination of heads and tails.

The probability (P) of an event occurring is

an expression of the relative frequency that the

event occurs in an infinite number of trials. P

ranges from 0 (the event never occurs) to 1 (the

event always occurs). Let us consider eye colour

and suppose that eyes are either blue, brown,

grey, or green. The probability that an individ-

ual’s eyes are blue is given by the expression

P(blue). The four categories are exhaustive and

mutually exclusive. Accordingly, P(blue and

brown)¼ 0. The probability that an individual’s

eyes are coloured either blue or brown is given

by the expression P(blue or brown)¼ P(blue) þ
P(brown). Because the above categories are

exhaustive, P(blue or brown or grey or green)¼
P(blue)þ P(brown) þ P(grey) þ P(green) ¼ 1.

Generally, if we consider two mutually

exclusive events A and B, then:

PðA and BÞ ¼ 0:

PðA or BÞ ¼ PðAÞ þ PðBÞ:

Additionally, if the events A and B are

exhaustive, P(A or B) ¼ 1.

If two events are not mutually exclusive,

they be independent (the probability of one

event occurring is not affected by whether or

not another event occurs). If two events A and

B are not mutually exclusive but are indepen-

dent, then:

PðA and BÞ ¼ PðAÞ % PðBÞ:
PðA or BÞ ¼ PðAÞ þ PðBÞ & PðA and BÞ:

The binomial distribution

Returning to the coin tossing experiment, if we

toss the coin three times, the following out-

comes are possible: TTT, TTH, THT, HTT,

THH, HTH, HHT, HHH. If we assume that the

probability of obtaining either a head or a tail

is equally likely on each toss, then each of the

eight possible combinations listed above is

equally likely to occur with a probability of 1/

8. Accordingly, the probability of obtaining no

heads in three trials is 1/8, one head is 3/8, two

heads is 3/8, and three heads is 1/8. The same

exercise could be repeated by tossing the coin a

100 times (Fig. 1).

It is observed that as n increases, the number

of heads obtained tends towards a normal distri-

bution. This type of distribution of two indepen-

dent outcomes is termed a binomial distribution.

In this particular example, the probability of one

of the outcomes (heads) is 0.5 per trial, but a

binomial distribution may be defined for any

probability, e.g. obtaining sixes after throwing a

die a 100 times.

Generally, a binomial distribution may be

used to describe any situation where there are n

independent trials with two mutually exclusive,

independent outcomes, the outcome of interest

occurring with a probability of p on each trial.

It follows a normal distribution provided n is

Key points

The laws of probability
dictate how typical a sample
dataset is of the population
from which it is drawn.

Which statistical test to use to
analyse a dataset depends on
a number of considerations
including the type of data
being analysed (e.g. interval or
categorical), whether interval
data are normally distributed
or not and whether data are
independent or paired.

Student’s unpaired and paired
t-tests are used to compare
two groups of normally
distributed independent and
matched groups, respectively.

Analysis of variance (ANOVA)
and repeated measures ANOVA

are used to compare three or
more groups of normally
distributed independent and
matched groups, respectively.

There are non-parametric
equivalents of all the above
tests.

Categorical data are
compared by drawing-up a
contingency table and applying
either Fisher’s exact or x2

tests.
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reasonably large and p does not take too extreme a value (close to

0 or 1). It can be shown mathematically that:

The mean of a binomial distribution ¼ np

The standard deviation of a binomial distribution ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
npð1& pÞ

p

Statistical inference

One group of interval data

Sometimes, we may wish to analyse just one dataset. For example,

we may wish to infer a population parameter (e.g. mean) from a

sample of the population data. Or, we may wish to determine

whether the mean (or median) of a sample dataset differs from

either a known value (e.g. population parameter) or a theoretical

value.

Estimation of the population mean from sample data
Suppose that we want to know the average IQ of all UK trainees in

anaesthesia. We will assume that IQ follows a normal distribution.

As testing the entire population is impractical, we decide to test a

random sample of 200 trainees. The data are analysed and the

sample mean and sample standard deviation are calculated. How

accurate is the sample estimate of the population mean (the mean

IQ of all UK trainees in anaesthesia)?

If we were to repeat the same investigation numerous times, we

would obtain a series of sample means that would follow a normal

distribution. This is the central limit theorem and it applies even

when the population data are not normally distributed. The mean

of this sampling distribution is equal to the population mean m.

The standard deviation of the sampling distribution equals SD/
p

n

[i.e. the standard error of the mean (SEM)]. As we do not know the

population standard deviation, the sample standard deviation is

used instead.

From previous discussions, we know that '95% of a sample of

normally distributed data lies within +1.96 SD. Thus, the 95%

confidence interval for the population mean IQ is given by the

expression x̄ 2 1.96 % (SD/
p

n) (m ( x̄ þ 1.96 % (SD/
p

n).

One sample t-test
Suppose now that we wish to know how the average IQ of UK trai-

nees in anaesthesia compares with the ‘known’ data for the UK

adult population as a whole. The estimate of the UK population

data for trainees in anaesthesia obtained in the above investigation

is used and compared with the known (published) data on the IQ

of the adult UK population as a whole using a one-sample t-test.

A t-value analogous to the z-value previously discussed in

relation to the standard normal distribution is calculated according

to the equation: t ¼ (x̄ 2 m)/SEM. For reasonably large samples, a

t ¼ 1.96 returns a P-value of '0.05. The t-value refers to the

t-distribution, which is used in this situation, rather than the

z-distribution because the population standard deviation (of UK

trainees in anaesthesia) is unknown and values from the sample

data are substituted. In fact, the t-distribution comprises a family

of curves depending on sample size; the t-distribution used for a

given sample size is specified by the number of degrees of

freedom (equal to n 2 1).

Wilcoxon rank sum test
In this test, a sample median is compared against a known or

hypothetical population median in a non-parametric distribution.

Each sample datum is assigned a rank depending on how far it is

from the median. Datum values lower than the median are given

negative values. All of these signed ranks are summed to produce

a W-value. If the null hypothesis is true, W is near to zero.

Fig. 1 Binomial distribution: the probability of obtaining heads after tossing a coin 100 times. The area under the curve (which follows a normal
distribution) ¼ 1.
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Comparing two groups of interval data

In clinical studies, we often want to compare two sample groups.

Two key criteria must be specified: are the data normally distribu-

ted and are the data paired?

Unpaired (independent) normally distributed data:
Student’s unpaired two-sample t-test
For example, the efficacy of a new hypotensive drug A may be

compared with an established drug B. The study has nA patients in

treatment Group A with sample mean x̄A and standard deviation

SDA and nB patients in treatment Group B with sample mean x̄B

and standard deviation SDB; (nA and nB do not have to be equal).

We need to calculate the difference between the two sample means

and the standard error of this difference between the two means,

from which we can calculate a confidence interval for the differ-

ence between them.

For Student’s t-test to be valid, the standard deviations of both

groups must be similar. This is often the case, even when the

sample means are significantly different. Most statistics software

programs will routinely check that this is true. If the two sample

standard deviations are observed to be unequal, Welch’s correction

to Student’s t-test should be applied.

The standard error of the difference between the two means is

given by
p

(s2/nA þ s2/nB), where s is the pooled sample standard

deviation. It follows from previous discussions that the confidence

interval for the difference between the two means is given by

CI ¼ (xA 2 xB) +t %
p

(s2/nA þ s2/nB) where the specific t-value

depends on the confidence interval of interest (e.g. t ¼ 1.96 for the

95% confidence interval of a large sample). If the calculated confi-

dence interval excludes zero, then we can be 95% confident that

the difference between the two treatment groups is statistically sig-

nificant (did not arise by random chance).

In the equation used to estimate the 95% confidence interval, a

value of t ¼ 1.96 was used. In order to calculate a P-value for the

observed difference between two study groups, assuming the null

hypothesis to be true, the equation may be re-arranged:

t ¼ (xA 2 xB)/
p

(s2/nA þ s2/nB). The resulting t-value may be

looked up in tables or calculated by a statistics programme. As dis-

cussed previously, because the t-distribution is a family of curves,

the number of degrees of freedom has to be taken into account

(equal to nA þ nB 2 2).

Paired normally distributed interval data: Student’s paired
two-sample t-test
The study comparing two hypotensive agents could be designed

differently. Instead of having two independent groups, all of the

patients recruited could be treated with one of the two study drugs

(decided upon by random allocation) and the effect of treatment

measured after a period of stabilization. Drug treatment is then

stopped and after a washout period during which arterial blood

pressure levels return to baseline levels, treatment with the other

drug is commenced and its effect determined. This type of study

in which all of the subjects receive both drugs under investigation

is called a crossover study. Each subject acts as his or her own

control.

The design of a crossover study involves the analysis of

matched pairs of data. In this situation, the appropriate statistical

test is Student’s paired t-test. Instead of analysing the data of two

pooled groups, the effects of drug treatment on each individual in

either arm of the study is separately analysed. As we shall see

later, this form of analysis is more powerful.

Non-parametric interval data
Student’s t-test is not used for data that does not follow a normal

distribution. The analogous statistical test to the unpaired t-test is

the Mann–Witney U-test; the analogous test to the paired t-test is

the Wilcoxon matched pairs test. Both tests analyse the data by

comparing the medians rather than the means, and by considering

the data as rank order values rather than absolute values.

Three or more groups of interval data

The t-tests and their non-parametric equivalents are only used to

compare two groups. When there are three or more groups under

investigation, the appropriate test for normally distributed interval

data is analysis of variance (ANOVA). If ANOVA testing suggests the

groups are different, we are usually interested in knowing between

which specific groups the differences exist. Thus, if we have three

study groups A, B, and C with unequal means, is A different from

B, A different from C, B different from C? One of several

so-called post hoc tests may then be used to determine which

differences are significant. This approach is inherently more robust

than simply performing three two-sample t-tests as we only

proceed to compare pairs of data once we have evidence of a sig-

nificant difference between all of the study groups. ANOVA may also

be used to compare just two study groups, when it is equivalent to

Student’s unpaired t-test.

When three or more normally distributed datasets are matched,

the repeated measures ANOVA test is equivalent to Student’s paired

t-test. For data that is not normally distributed, the Kruskal–Wallis

ANOVA by ranks test is used for independent groups and the

Friedman test for matched datasets.

Categorical data

When data are classified into groups, either the Fisher exact or the

x2 test is used to determine whether the sample proportions in

Table 1 Contingency table

Outcome 1 Outcome 2

Group 1 A B

Group 2 C D

Relative risk ¼ (A/(A þ B))/(C/(C þ D)); Odds ratio ¼ (A/B)/(C/D)

Probability and statistical tests
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each group are significantly different. A contingency table contain-

ing the data is produced as previously described. A 2 % 2 contin-

gency table is best analysed using the Fisher exact test. For larger

tables, the x2 test is used. Although the x2 test can also be used for

analysis of 2 % 2 tables (when Yates’ correction is usually

applied), it gives a less accurate result. It was used in the past, as it

is easier to calculate than the Fisher exact test. However, with the

widespread availability of computer software packages for statisti-

cal analysis, the Fisher exact test is preferable.

Two statistical measures of the relative likelihood of an event

or outcome occurring in two sample groups may be defined: the

relative risk and odds ratio. When the data in a contingency table

relate to a prospective study, both these measures may be calcu-

lated. Only the odds ratio may be calculated for retrospective

case–control studies. Calculation of relative risk and odds ratio are

summarized in Table 1.

The relative risk of obtaining a given outcome after one inter-

vention compared with another is equal to the ratio of the observed

risk of the outcome after the first intervention divided by the

observed risk of the outcome after the second intervention. The

key factor in calculating relative risk is knowing the actual number

of individuals at risk in each group. In a prospective study, the

number of patients at risk of an outcome is known, whereas in a

retrospective study, the outcome is the starting point and the

number of patients at risk is not known.

The odds ratio is defined as the odds of the outcome of interest

occurring after the first intervention divided by the odds of the

outcome of interest occurring after the second intervention, where

there are two mutually exclusive outcomes. The odds of an event

or outcome in each of the two study groups ¼p/(1 2 p), where p

is the probability of the outcome of interest and (1 2 p) the prob-

ability of the alternate outcome.

Both relative risk and odds ratio are statistically valid

approaches. Relative risk is usually preferred as it accords more to

the commonsense notion of how we view relative risks between

two groups when the data are eyeballed.

Table 2 summarizes which statistical test to use depending on

the data to be analysed.
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Table 2 Choosing a statistical test

Analysis required Statistical test

Normally distributed data Non-normally distributed data

Compare mean or median of one sample group against a known value One sample t-test Wilcoxon Rank Sum test

Compare means or medians of two sample groups (unpaired data) Unpaired t-test Mann–Whitney U-test

Compare means or medians of two sample groups (paired data) Paired t-test Wilcoxon Matched Pairs test

Compare means or medians of ) three sample groups (unpaired data) ANOVA Kruskal–Wallis ANOVA

Compare means or medians of ) three sample groups (paired data) Repeated measures ANOVA Friedman test

Compare two sample proportions of categorical data (unpaired data) Fisher exact test

Compare two sample proportions of categorical data (paired data) McNemar’s test

Compare ) three sample proportions of categorical data x2 test
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