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This is the fourth in a series of articles in this

journal on the use of statistics in medicine. In

the previous issue, we described how to choose

an appropriate statistical test. In this article, we

consider this further and discuss how to inter-

pret the results.

More on choosing an
appropriate statistical test

Deciding which statistical test to use to analyse

a set of data depends on the type of data (inter-

val or categorical, paired vs unpaired) being

analysed and whether or not the data are nor-

mally distributed. Interpretation of the results

of statistical analysis relies on an appreciation

and consideration of the null hypothesis,

P-values, the concept of statistical vs clinical

significance, study power, types I and II statisti-

cal errors, the pitfalls of multiple comparisons,

and one vs two-tailed tests before conducting

the study.

Assessing whether a data set follows
a normal distribution

It may be apparent from constructing a histo-

gram or frequency curve that the data follow a

normal distribution. However, with small

sample sizes (n , 20), it may not be obvious

from the graph that the data are drawn from a

normally distributed population. The data may

be subjected to formal statistical analysis for

evidence of normality using one or more

specific tests usually included in computer soft-

ware packages, such as the Shapiro–Wilkes

test. Such tests are fairly robust with larger

sample sizes (n . 100). However, the choice

between parametric and non-parametric statisti-

cal analysis is less important with samples of

this size as both analyses are almost equally

powerful and give similar results. With smaller

sample sizes (n , 20), tests of normality may

be misleading. Unfortunately, non-parametric

analysis of small samples lacks statistical

power and it may be almost impossible to

generate a P-value of ,0.05, whatever the

differences between the groups of sample data.

When in doubt as to the type of distribution

that the sample data follow, particularly when

the sample size is small, non-parametric analy-

sis should be undertaken, accepting that the

analysis may lack power. The best solution to

avoiding mistakes in choosing the appropriate

statistical test for analysis of data is to design a

study with sufficiently large numbers of sub-

jects in each group.

Unpaired vs paired data

When comparing the effects of an intervention

on sample groups in a clinical study, it is essen-

tial that the groups are as similar as possible,

differing only in respect of the intervention of

interest. One common method of achieving this

is to recruit subjects into study groups by

random allocation. All subjects recruited should

have an equal chance of being allocated into

any of the study groups. Provided the sample

sizes are large enough, the randomization

process should ensure that group differences in

variables that may influence outcome of the

intervention of interest (e.g. weight, age, sex

ratio, and smoking habit) cancel each other out.

These variables may themselves be subjected

to statistical analysis and the null hypothesis

that there is no difference between the study

groups tested. Such a study contains indepen-

dent groups and unpaired statistical tests are

appropriate. An example would be a compari-

son of the efficacy of two different drugs for

the treatment of hypertension.

Another method of conducting this type of

investigation is the crossover study design in

which all subjects recruited receive either treat-

ment A or treatment B (the order decided by

random allocation for each patient), followed

by the other treatment after a suitable

‘washout’ period during which the effects of

the first treatment are allowed to wear off. The

data obtained in this study would be paired and

subject to paired statistical analysis. The
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effectiveness of the pairing may be determined by calculating the

correlation coefficient and the corresponding P-value of the

relationship between data pairs.

A third method involves defining all those characteristics that

the researcher believes may influence the effect of the intervention

of interest and matching the subjects recruited for those character-

istics. This method is potentially unreliable, depending as it does

on ensuring that key characteristics are not inadvertently over-

looked and therefore not controlled.

The main advantage of the paired over the unpaired study

design is that paired statistical tests are more powerful and fewer

subjects need to be recruited in order to prove a given difference

between the study groups. Against this are pragmatic difficulties

and additional time needed for crossover studies, and the danger

that, despite a washout period, there may still be an influence of

the first treatment on the second. The pitfalls of matching patients

for all important characteristics also have to be considered.

The null hypothesis and P-values

Before undertaking statistical analysis of data, a null hypothesis is

proposed, that is, there is no difference between the study groups

with respect to the variable(s) of interest (i.e. the sample means or

medians are the same). Once the null hypothesis has been defined,

statistical methods are used to calculate the probability of observ-

ing the data obtained (or data more extreme from the prediction of

the null hypothesis) if the null hypothesis is true.

For example, we may obtain two sample data sets which appear

to be from different populations when we examine the data. Let us

consider that the appropriate statistical test is applied and the

P-value obtained is 0.02. Conventionally, the P-value for statistical

significance is defined as P , 0.05. In the above example, the

threshold is breached and the null hypothesis is rejected. What

exactly does a P-value of 0.02 mean? Let us imagine that the

study is repeated numerous times. If the null hypothesis is true and

the sample means are not different, a difference between the

sample means at least as large as that observed in the first study

would be observed only 2% of the time.

Many published statistical analyses quote P-values as "0.05

(not significant), ,0.05 (significant), ,0.01 (highly significant)

etc. However, this practice resulted from an era before the wide-

spread availability of computers for statistical analysis when

P-values had to be looked up in reference tables. This approach is

no longer satisfactory and precise P-values obtained should always

be quoted. The importance of this approach is illustrated by the

following example. In a study comparing two hypotensive agents,

drug A is found to be more effective than drug B and P , 0.05 is

quoted. We are convinced and immediately switch all our hyper-

tensive patients to drug A. Another group of investigators conduct

a similar study and find no significant difference between the two

drugs (P " 0.05). We immediately switch all our hypertensive

patients back onto drug B as it is less expensive and seems to be

equally effective. We may also be somewhat confused by the

apparently contradictory conclusions of the two studies.

In fact, if the actual P-value of the first study was 0.048 and

that of the second study was 0.052, the two studies are entirely

consistent with each other. The conventional value for statistical

significance (P , 0.05) should always be viewed in context and a

P-value close to this arbitrary cut-off point should perhaps lead to

the conclusion that further work may be necessary before accept-

ing or rejecting the null hypothesis.

Another example of the arbitrary nature of the conventional

threshold for statistical significance may be considered. Suppose a

new anti-cancer drug has been developed and a clinical study is

undertaken to assess its efficacy compared with standard treatment.

It is observed that mortality after treatment with the new drug

tends to be lower but the reduction is not statistically significant

(P ¼ 0.06). As the new drug is more expensive and appears to be

no more effective than standard treatment, should it be rejected? If

the null hypothesis is true (both drugs equally effective) and we

were to repeat the study numerous times, we would obtain the

difference observed (or something greater) between the two study

groups only 6% of the time. At the very least, a further larger

study needs to be undertaken before concluding with confidence

that the new drug is not more effective—as we shall see later, the

original study may well have been under-powered.

Statistical vs clinical significance

Statistical significance should not be confused with clinical signifi-

cance. Suppose two hypotensive agents are compared and the

mean arterial blood pressure after treatment with drug A is 2 mm

Hg lower than after treatment with drug B. If the study sample

sizes are large enough, even such a small difference between the

two groups may be statistically significant with a P-value of

,0.05. However, the clinical advantage of an additional 2 mm Hg

reduction in mean arterial blood pressure is small and not clini-

cally significant.

Confidence intervals

A confidence interval is a range of sample data which includes an

unknown population parameter, for example, mean. The most com-

monly reported is the 95% confidence interval (CI 95%), although

any other confidence interval may be calculated. If an investigation

is repeated numerous times, the CI 95% generated will contain the

population mean 95% of the time.

Confidence intervals are important when analysing the results

of statistical analysis and help to interpret the P-value obtained.

They should always be quoted with the P-value. Consider an inves-

tigation comparing the efficacy of a new hypotensive agent with

standard treatment. The investigator considers that the minimum

clinically significant difference in mean arterial blood pressure

after treatment with the two drugs is 10 mm Hg. If P , 0.05, three

possible ranges for CI 95% may be considered (Fig. 1). If

Statistical tests
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P " 0.05, four possible ranges for CI 95% may be considered

(Fig. 2). These ranges for the CI 95% are summarized in Table 1.

Study power and types I and II
statistical errors

After statistical analysis of data, the null hypothesis is either

accepted or rejected on the basis of the P-value. As the null

hypothesis may be either true or false in reality and the P-value

obtained may be statistically significant (P , 0.05) or not, four

possible outcomes need to be considered, as shown in Table 2.

If the null hypothesis is really true (i.e. there is no difference in

reality between the groups) and the P-value obtained is "0.05, the

conclusion based on the statistical analysis accords with reality.

Similarly, if the null hypothesis is really false (i.e. there is a differ-

ence in reality between the groups) and the P-value obtained is

,0.05, the conclusion based on the statistical analysis once again

accords with reality.

However, if the null hypothesis is true and a P-value of ,0.05

is obtained, the incorrect inference is drawn that the sample groups

of data are different. This is termed a type I statistical error.

A difference is found statistically where none exists in reality. The

difference between the groups of sample data is not due to any

intervention but rather by random chance. It is a fact of statistical

life that whatever the value of P, there will always be a random

chance of making a type I error, although the lower the P-value is,

the smaller this becomes.

The final possibility to consider is that the null hypothesis is

false in reality but the P-value obtained is "0.05. We have incor-

rectly concluded that the sample groups are similar—we have

missed a real difference. This is a type II statistical error. The

main cause of type II errors is inadequate sample size—the study

lacks power. The power of a test is defined as (1 2 b) # 100%,

where b is the probability of a type II error. In order to be accepta-

ble for publication, most editors of scientific journals require the

power of a study to be at least 80%. The relationship between

sample size and study power is shown in Figure 3.

It is good practice to perform a power calculation before com-

mencing the clinical study proper in order to minimize the risk of

obtaining a type II error and most journals and ethics committees

require this to be explicitly defined in the methodology section.

For example, in planning an investigation into the effect of a new

inotrope on cardiac output, the investigator must decide the

minimum difference between the cardiac output of controls vs

active treatment that would be considered to be clinically

Fig 1 Statistical significance of the 95% confidence interval when P , 0.05
(Table 1).

Fig 2 Statistical significance of the 95% confidence interval when P " 0.05
(Table 1).

Table 1 Interpreting confidence intervals

P-value

,0.05

Is the difference between sample means

clinically significant?

Interpretation

At the lower end

of CI range

At the upper end

of CI range

Yes Yes Yes A: There is a clinically

important difference

between the study groups

Yes No Yes B: Cannot reach a final

conclusion—more data

required

Yes No No C: There is a clinically

unimportant difference

between the sample

groups

No No No D: There is no clinically

important difference

between the two groups

No Yes No E: Cannot reach a final

conclusion—more data

required

No No Yes F: Cannot reach a final

conclusion—more data

required

No Yes Yes G: Meaningless range of

CI—more data required

Statistical tests
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significant. Once this difference has been defined, the investigator

needs access to data obtained from previously published work or

an initial pilot study detailing the mean and standard deviation of

the control data.

The dangers of multiple comparisons

Consider an investigation in which 20 different herbal remedies are

studied for their effects on the amount of sleep obtained by sub-

jects with insomnia. There is also a placebo group against which

each of the 20 active treatment groups are compared. Multiple

t-tests are performed for each of the herbal remedies and it is

observed that one of them does appear to promote increased sleep

when compared with placebo, with a P-value of ,0.05. How valid

is this conclusion?

In fact, the probability of any one of the 20 herbal remedies

giving a statistically significant result at the level P , 0.05 is 1 in

20. Therefore, it would not be surprising if statistical analysis of

one of the 20 remedies under investigation produced a P , 0.05

just by random chance. The correct approach when undertaking

multiple comparisons such as this is to employ a correction factor.

The most well known is Bonferroni’s correction in which the

P-value for significance is adjusted from P , 0.05 to P , 0.05/n

where n is the number of comparisons being made. Alternatively,

an analysis of variance (ANOVA) between all 21 study groups should

be performed, followed by post hoc individual comparisons

calculated only if the P-value for the ANOVA is ,0.05.

One vs two-tailed tests

All statistical tests start with the premise of the null hypothesis.

This is then tested by calculating the probability that the differ-

ences observed between the sample groups are due to chance (the

P-value). Let us consider an investigation comparing two sample

means (e.g. mean arterial blood pressure after treatment of hyper-

tension with two different drugs). When analysing such data, we

obviously do not know whether the drugs are equally effective, if

drug A is more effective than drug B or vice versa. Accordingly,

when calculating the P-value, the key question is: what is the prob-

ability of obtaining the difference observed between the two

sample means (or something more extreme) by random chance

given that either group may have the higher mean? The two-tailed

unpaired t-test answers this question.

It is almost always appropriate to conduct statistical analysis of

data using two-tailed tests and this should be specified in the study

protocol before data collection. A one-tailed test is usually inap-

propriate. It answers a similar question to the two-tailed test but

crucially it specifies in advance that we are only interested if the

sample mean of one group is greater than the other. If analysis of

the data reveals a result opposite to that expected, the difference

between the sample means must be attributed to chance, even if

this difference is large.

For example, the organizer of a statistics course subjects the

candidates to an MCQ test both before and after the course. The

course marks are then analysed using a paired t-test (as the data

are matched pairs of pre- and post-course marks for each candi-

date). The organizer decides to use a one-tailed test as he is certain

that candidates’ knowledge must improve after the course and dis-

counts the possibility that candidates will score less well after it.

Somewhat surprisingly, after the data are analysed, the mean MCQ

scores post-course are worse than pre-course with a P-value of

0.01. The correct statistical interpretation of this result is to attri-

bute the observed difference as due to random chance. However, it

may be indeed be true that candidates do perform less well after

the course. Perhaps, the course is confusing or contains numerous

errors of fact. The course organizer was wrong to use a one-tailed

test in this situation—a two-tailed test would have been

appropriate.

One-tailed tests should always be viewed with some suspicion.

It is actually quite difficult to think of examples in clinical research

where a one-tailed test is appropriate. One example might be a

study of a neuromuscular blocking drug in which two different

intubating doses are given to patients and the time taken for the

train-of-four ratio to recover to "0.8 recorded. It is probably justi-

fiable to discount the possibility that the lower dose of drug results

in a longer recovery time.

Table 2 Types I and II errors

P-value significant (,0.05)? Null hypothesis true or false in reality

True False

Yes Type I error (a) Analysis is correct

No Analysis is correct Type II error (b)

Fig 3 Relationship between power and sample size.

Statistical tests
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